

US Lattice Quantum Chromodynamics

Heavy Quark Flavor Physics from Lattice QCD

Aida X. El-Khadra
(University of Illinois)

Lattice meets Experiment

Fermilab

07 March 2014

Outline

- Introduction
- - D mesons
 - B mesons
- Neutral meson mixing
 - B mesons
 - D mesons
- Conclusion & Outlook

Lattice Averages

We have independent lattice results from different lattice groups using different methods for an increasing number of quantities

- ⇒ need averages ⇒ inputs into UT fits
- two efforts:
 - 1. FLAG -1 (Flavianet Lattice Averaging Group)
 Colangelo, et al (Eur. Phys. J. C71 (2011) 1695, http://itpwiki.unibe.ch/flag/) 12 people (EU) light quark quantities only
 - 2. LLV (Laiho, Lunghi, Van de Water) (Phys.Rev.D81:034503,2010, http://latticeaverages.org/) light and heavy quark quantities
 - + UT fits with lattice averages as input

Lattice Averages

We have independent lattice results from different lattice groups using different methods for an increasing number of quantities

- ⇒ need averages ⇒ inputs into UT fits
- two efforts:
 - 1. FLAG -1 (Flavianet Lattice Averaging Group)
 Colangelo, et al (Eur. Phys. J. C71 (2011) 1695, http://itpwiki.unibe.ch/flag/) 12 people (EU) light quark quantities only
 - 2. LLV (Laiho, Lunghi, Van de Water) (Phys.Rev.D81:034503,2010, http://latticeaverages.org/) light and heavy quark quantities
 - + UT fits with lattice averages as input
- FLAG -2 (Flavor Lattice Averaging Group) http://itpwiki.unibe.ch/flag/
 28 people (EU, US, Japan) representing the big lattice collaborations light and heavy quark quantities
 - 1st review (arXiv:1310.8555 with April 30 deadline → revision in progress with November 30 deadline)

The FLAG-2 collaboration

Editorial Board

Vus and Vud

Light Quark Masses

LECs

Advisory Board

Kaon B-parameter

Strong Coupling

B,D decay constants and B mixing

Semileptonic *B,D* meson form factors

Ensemble overview

MILC used by FNAL/MILC, HPQCD, SWME RBC/UKQCD used by χ QCD ETM used by Orsay

- For light quarks ($m_\ell < \Lambda_{\rm QCD}$), discretization errors ~ $\alpha_s^k (a\Lambda_{\rm QCD})^n$
- For heavy quarks, discretization errors ~ $\alpha_s^k(am_h)^n$ with currently available lattice spacings

```
for b quarks am_b > 1 for charm am_c \sim 0.15 \text{-} 0.6
```

need effective field theory methods for *b* quarks for charm can use light quark methods, if action is sufficiently improved

- avoid errors of $(am_b)^n$ in by using EFT:
 - → relativistic HQ actions (Fermilab, Columbia, Tsukuba)
 - + HQET
 - + NRQCD

or

- use improved light quark actions for charm (HISQ, tmWilson, NP imp. Wilson, Overlap, ...)
 and for b:
 - use same LQ action as for charm but keep $am_h < 1$,
 - ◆ use HQET and/or static limit to extrapolate/interpolate to b quark mass

Relativistic Heavy Quarks (Fermilab, Columbia, Tsukuba)

- start with a relativistic action, usually Wilson + O(a) improvement
- with mass-dependent matching conditions, cut-off effects are

$$lpha_s^k f(m_h a) (a \Lambda)^n$$
 with $am_h \sim 1: f(m_h a) \sim O(1)$

current implementations:

FNAL/MILC: tree-level tadpole O(a) improved + 1-loop PT PACS-CS: tree-level O(a) improved : NP @ m_h =0 + 1-loop PT for m_h

dependence

RBC: NP O(a) improved

NRQCD:

- ullet expansion in v^2 or Λ/m_h and a
- continuum limit defined as $a \to 0$ does not exist (power-law divergent terms in coefficients)
- keep $m_h a > 1$, i.e. a finite.
- "continuum limit" at $a \neq 0$: match and improve to high enough order in Λ/m_h and a so that residual truncation and discretization errors are small
- needs a scaling window where $a\Lambda \ll 1$ and $m_h a > 1$

for
$$b$$
 quarks $\Rightarrow a \gtrsim 0.05 \text{ fm}$

Current implementation (HPQCD):

• errors $\sim O(\alpha_s v^2), O(\alpha_s v^4), O(v^6), O(\alpha_s (a\Lambda)^2)$

HQET:

- leading term, static limit:
 - O(a) improved, $1/m_Q$ effects not included
 - SU(3) breaking ratios have suppressed truncation errors
- \ensuremath{ullet} systematic expansion in $1/m_Q$
- $\cent{ heta}$ matching NP to obtain $1/m_Q$ accuracy

current implementations:

```
HQET (ALPHA): NP matched through 1/m_Q + NPR error \sim O(a\Lambda^2/m_h, (\Lambda/m_h)^2, (a\Lambda)^2)
```

```
static (RBC/UKQCD): for SU(3) breaking ratios, 1/m_Q error estimated by power counting
```

Light Quark Actions for b quarks

- Heavy HISQ method (HPQCD):
 - HISQ action is highly improved for heavy quarks:

$$\sim \alpha_s \Lambda/m_h(am_h)^2, (\Lambda/m_h)^2(am_h)^4$$

- Θ keep $am_h \leq 0.85$
- \ensuremath{ullet} extrapolate to b quark mass using HQET inspired expansion.

Heavy HISQ method

HPQCD 11A (Phys.Rev. D85 (2012) 031503)

HPQCD sees similar behavior for other HL quantities. For HH quantities discretization errors are a bit larger (but still small).

Light Quark Actions for *b* quarks

- Ratio Method (ETM):
 - Θ use improved action with $am_h \leq 0.6$

$$f_B: \phi(m_h) \equiv f_{h\ell}\sqrt{m_H} \rightarrow z = \phi(m_h)/\phi(m_h/\lambda)$$

where $\lambda \sim 1.2$

- discretization errors are suppressed for such ratios
- $\ensuremath{\mathbf{9}}$ use HQET to extrapolate to physical b quark mass.

$\ensuremath{\,^{ullet}} D$ meson physics

- leptonic $f_D, f_{D_s}, f_{D_s}/f_D$
- semileptonic $D \to K(\pi)\ell\nu$
- V_{cs} and V_{cd}

D and D_s meson decay constants

example:
$$D_s^+ o \mu^+ \nu_\mu$$

$$\Gamma(D_s^+ \to \mu^+ \nu_\mu) = (\text{known}) \times |V_{cs}|^2 \times f_{D_s^+}^2$$

- use experiment + LQCD input for determination of CKM element
- experimental uncertainty (Rosner & Stone, arXiv:1309.1924):

 D_s : 1.8% D^+ : 2.4%

radiative correction of ~1% included for muon final state

FLAG-2 plot conventions

- Satisfies all quality criteria; included in average.
- Satisfies all quality criteria, but not included in average because the result is superseded or published in a conference proceedings.
- ⊢□⊢ Doesn't satisfy all quality criteria; not included in average.
- FLAG-2 average for each N_f
- Non-lattice result

My FLAG-2 plot conventions

- HOH New results. Not rated for FLAG-2 quality criteria; not included in average.
- Satisfies all quality criteria; included in average.
- Satisfies all quality criteria, but not included in average because the result is superseded or published in a conference proceedings.
- ⊢□⊢ Doesn't satisfy all quality criteria; not included in average.
- FLAG-2 average for each N_f
- Non-lattice result

D and D_s meson decay constants

small errors due to

- highly improved action (HISQ)
- → absolutely normalized current
- ◆ Asqtad ensembles with small lattice spacings

D and D_s meson decay constants

New results (shown in magenta) not included in FLAG-2 averages.

small errors due to

- physical light quark masses
- highly improved action (HISQ)
- → absolutely normalized current
- → HISQ ensembles with small lattice spacings (0.06 fm)

New results with other improved actions (DWF, twisted-mass Wilson, NP Wilson)

semileptonic D decay

example: $D o K \ell
u$

$$\frac{d\Gamma(D \to K\ell\nu)}{dq^2} = (\text{known}) |\mathbf{p}_K|^3 |V_{cs}|^2 |f_+^{D \to K}(q^2)|^2$$

- * HFAG average for $f_{+}(0)|V_{cs(d)}|$: 0.6% (2.1%)
- ★ experimental average neglects Coulomb correction in neutral meson decay ~1%
- ★ use shape to test LQCD and improve CKM determination

Form factors for $D \to K(\pi) \ell \nu \ \& \ V_{cs(d)}$

New results (shown in magenta) **not** included in FLAG-2 averages.

small errors due to

- highly improved action (HISQ)
- ◆ absolutely normalized current

improvement due to

adding shape

new results coming soon

- **→** ETM
- **→ FNAL/MILC**

Implications for $V_{cd} \ \& \ V_{cs}$

leptonic

$$f_B, f_{B_s}, f_{B_s}/f_B$$

semileptonic heavy to light

$$B \to \pi \ell \nu \& V_{ub} \quad B_s \to K \ell \nu \quad B \to K(\pi) \ell^+ \ell^-$$

• B to D or D* decays

$$B \to D^{(*)} \ell \nu \& V_{cb}$$

 $B_s \to D_s \ell \nu$
 $B \to D \tau \nu$

B and B_s meson decay constants

experimental measurement suffer from helicity suppression

$$B^+ \to \tau^+ \nu_{\tau}$$

Experimental average for branching fraction: 25%

$$B_s \to \mu^+ \mu^-$$

Experimental average for branching fraction: 24%

B and B_s meson decay constants

New results (shown in magenta) **not** included in FLAG-2 averages.

small errors due to

- highly improved action (heavy HISQ method)
- → absolutely normalized current

HPQCD 13:

- → physical mass ensembles
- ◆ NRQCD-HISQ perturbative matching error dominates

* shape for semileptonic B decays: use z-expansion for model-independent parameterization of q^2 dependence

Form factor for $B \to \pi \ell \nu \ \& \ V_{ub}$

A. El-Khadra, Lattice meets Experiment, Fermilab, 07 Mar 2014

Form factor for $B \to \pi \ell \nu \ \& \ V_{ub}$

Determine V_{ub} from combined fit.

Implications for V_{ub}

Form factor for $B \to \pi \ell \nu \& V_{ub}$

D. Du (FNAL/MILC) @ Lattice 2013

• blind analysis

- $N_f = 2 + 1$ (Asqtad)
- 4 *a*'s, 12 ensembles
- Fermilab b quarks
- new functional method for z-expansion fit after chiral extrapolation.
- systematic error analysis in progress.

also in progress: Y. Liu (FNAL/MILC) $B_s o K \ell
u \ \& \ V_{ub}$

Form factor for $B \to \pi \ell \nu \& V_{ub}$

T. Kawanai (RBC/UKQCD) @ Lattice 2013

- $N_f = 2 + 1 \text{ (DWF)}$
- 2 a's, 5 ensembles
- RHQ b quarks
- systematic error analysis in progress.

also: recent work by HPQCD (C. Bouchard @ Lattice 2013) using NRQCD-HISQ quarks

Form factors for $B \to K\ell^+\ell^-$

C. Bouchard (HPQCD) @ Lattice 2013

also in progress: FNAL/MILC (R. Zhou @ Lattice 2013) using Fermilab b quarks

Form factors for $B \to K\ell^+\ell^-$

SM theory compared to experiment (courtesy of C. Bouchard)

Form factors for $B \to D^{(*)} \ell \nu \ \& \ V_{cb}$

$$\frac{d\Gamma(B \to D^* \ell \nu)}{d\omega} = (\text{known}) \times |V_{cb}|^2 \times (\omega^2 - 1)^{1/2} |\mathcal{F}(\omega)|^2$$
$$\frac{d\Gamma(B \to D\ell \nu)}{d\omega} = (\text{known}) \times |V_{cb}|^2 \times (\omega^2 - 1)^{3/2} |\mathcal{G}(\omega)|^2$$

at zero recoil (HFAG 2011):

$$B \to D^* \ell \nu : |V_{cb}| \mathcal{F}(1) = (35.90 \pm 0.45) \times 10^{-3}$$

 $B \to D \ell \nu : |V_{cb}| \mathcal{G}(1) = (42.6 \pm 1.5) \times 10^{-3}$

 \Rightarrow need form-factors at non-zero recoil for V_{cb} determination from $B \to D \ell \nu$

Note: the experimental average doesn't include Coulomb correction (~1%) for the neutral meson decay

Form factors for $B \to D^{(*)} \ell \nu \& V_{cb}$

New results (shown in magenta) not included in FLAG-2 averages.

FNAL/MILC: small errors due to

- use of ratios
- 2013:5 a's, 12 ensembles
- → new results by Orsay group using ETM ratio method
- work in progress:HPQCD (NRQCD-HISQ)Bailey (OK action)

Also recent work on $B_s \to D_s^{(*)}$ form factors

Implications for V_{cb}

New result (shown in magenta) not included in FLAG-2 average.

FNAL/MILC 2013 (arXiv:1403.0635):

- ◆ estimate of Coulomb correction included, adds 0.5% error
- ◆ LQCD error commensurate with experiment

other interesting quantities

• $B_s \to D_s \ell \nu/B \to D \ell \nu \ \& \ B_s \to \mu^+ \mu^-$ (Fleischer et al, arXiv:1004.3984):

$$\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{\epsilon_{DK}}{\epsilon_{D_s\pi}} \frac{N_{D_s\pi}}{N_{DK}} \right] \times \frac{1}{\mathcal{N}_a \mathcal{N}_F} \qquad \mathcal{N}_F = \left[\frac{f_0^{(s)}(M_\pi^2)}{f_0^{(d)}(M_K^2)} \right]^2$$

form factor ratio calculated in lattice QCD

• $R(D)={
m Br}(B o D au
u)/{
m Br}(B o D \ell
u)$ measured by BaBar, observed tension with the SM depends on scalar form factor calculated in lattice QCD

Neutral meson mixing

- B mesons $f_B\sqrt{B_B}, f_{B_s}\sqrt{B_{B_s}}, \xi$
- D mesons

neutral B, and B_s meson mixing

example:

$$B_d^0 - \overline{B_d^0} {\rm mixing}$$

$$\Delta M_d = ({\rm known}) \times |V_{td}^* V_{tb}|^2 \times \langle \overline{B^0} | \mathcal{O}_{\Delta B=2} | B^0 \rangle$$
 also:

$$\frac{\Delta M_s}{\Delta M_d} = \frac{m_{B_s}}{m_{Bd}} \times \left| \frac{V_{ts}}{V_{td}} \right|^2 \times \xi^2 \quad \text{with} \quad \xi \equiv \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

• many groups also calculate BSM mixing parameters $\langle \mathcal{O}_{1-5} \rangle$

B and B_s meson mixing parameters

New results (shown in magenta) not included in FLAG-2 averages.

B and B_s meson mixing parameters

New results (shown in magenta) **not** included in FLAG-2 averages.

new results coming soon
 FNAL/MILC
 ETM
 HPQCD

B and B_s meson mixing parameters

J. Chang (FNAL/MILC) @ Lattice 2013

FNAL/MILC:

- ◆ 4 a's, 14 ensembles
- → Fermilab b quarks
- → systematic error analysis in progress

D meson mixing parameters

matrix elements of local operators only

J. Chang (FNAL/MILC) @ Lattice 2013

FNAL/MILC:

- ♦ 4 a's, 14 ensembles
- → Fermilab charm quarks
- → systematic error analysis in progress

ETM (Lattice 2013):

- ♦ new results with N_f =2+1+1 and N_f =2
- ◆ using tmWilson charm quarks

Conclusions & Outlook

- three groups have already generated ensembles with light sea quark masses at their physical values
 - ⇒ expect to see an increasing number of physics results with these and an increasing number of such ensembles
- light quark methods for charm: HISQ, tmWilson, NP Wilson, DWF,
 ⇒ high precision
- heavy quark methods for b: NRQCD, HQET, Fermilab, RHQ, Tsukuba, heavy HISQ, ETM ratio method, ...
 look for consistency between results with different methods
- If discretization/truncation/matching errors dominate, gain from physical mass ensembles is less apparent
 - heavy HISQ, ETM ratio method look promising
- averages: FLAG-2 ⇒ use as inputs to UT fits
- expand LQCD calculations to weak decays of heavy baryons (in progress) vector meson final states (in progress)

Conclusions & Outlook

- \bullet ETM $n_f = 2+1+1$
- MILC $n_f = 2+1+1$
- **MILC** $n_f = 2+1$
- RBC/UKQCD n_f = 2+1

Summary

Quark Flavor Physics Working Group (arXiv:1311.1076)

Quantity	CKM	Present	2007 forecast	Present	2018
	element	expt. error	lattice error	lattice error	lattice error
$\overline{f_K/f_\pi}$	$ V_{us} $	0.2%	0.5%	0.4%	0.15%
$f_+^{K\pi}(0)$	$ V_{us} $	0.2%	_	0.4%	0.2%
f_D	$ V_{cd} $	4.3%	5%	2 % 0.5%	< 1%
f_{D_s}	$ V_{cs} $	2.1%	5%	2 % 0.5%	< 1%
$D\to\pi\ell\nu$	$ V_{cd} $	2.6%	_	4.4%	2%
$D \to K \ell \nu$	$ V_{cs} $	1.1%	_	2.5%	1%
$B \to D^* \ell \nu$	$ V_{cb} $	1.3%	_	1 .8 %1.4%	< 1%
$B \to \pi \ell \nu$	$ V_{ub} $	4.1%	_	$8.7\% \rightarrow \sim 4^{\circ}$	<mark>%</mark> 2%
f_B	$ V_{ub} $	9%	_	2.5%	< 1%
ξ	$ V_{ts}/V_{td} $	0.4%	24%	4%	< 1%
Δm_s	$ V_{ts}V_{tb} ^2$	0.24%	712%	11%	5%
B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	3.56%	1.3%	< 1%

Table 6. History, status and future of selected lattice-QCD calculations needed for the determination of CKM matrix elements. 2007 forecasts are from Ref. [112]. Most present lattice results are taken from latticeaverages.org [113]. The quantity ξ is $f_{B_s}\sqrt{B_{B_s}}/(f_B\sqrt{B_B})$.

Conclusions: UT fit

Conclusions & Outlook

- Sub leading effects:
 - Isospin: leading order correction included via tuning light valence quarks (can also include EM isospin corrections) effects due to the degenerate sea ~ NNLO in ChPT
 - errors can be further reduced: simulations with 1+1+1+1 sea quarks (nondegenerate) add QED
 - radiative corrections:
 are already relevant for heavy quark physics ~0.5%
 not straightforward
 - include charm quark in sea ✓

Backup slides

Motivation

time line: quark flavor experiments

a rich history and exciting future! great discovery potential!

~ 2015 Belle II, LHC upgrade NA62 KOTO

LHCb, BaBar, Belle, BES III

CDF, D0, CLEO-c, KLOE, ...

ARGUS, CLEO, NA48, KTeV, BNL kaon experiments,...

now

past

Motivation: $B_s \to \mu^+ \mu^-$

S. Hansmann-Menzemer @ EPS 2013

Combined LHCb + CMS Result

Observation:

$$BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

$$BR(B^0 \to \mu^+ \mu^-) = 3.6^{+1.6}_{-1.4} \times 10^{-10}$$

Motivation: $B_s \to \mu^+ \mu^-$

Standard Model prediction: Buras, et al, arXiv:1303.3820

$$BR(B_s \to \mu^+ \mu^-)_{SM} = 3.25 \times 10^{-9} \left(\frac{M_t}{173.2 \,\text{GeV}}\right)^{3.07} \left(\frac{F_{B_s}}{225 \,\text{MeV}}\right)^2 \left(\frac{\tau_{B_s}}{1.500 \text{ps}}\right) \left|\frac{V_{tb}^* V_{ts}}{0.0405}\right|^2.$$

uses f_{B_s} from HPQCD 13

$$BR(B_s \to \mu^+ \mu^-)_{SM} = 3.38 \times 10^{-9} \left(\frac{M_t}{173.2 \,\text{GeV}}\right)^{1.6} \left(\frac{\tau_{B_s}}{1.500 \text{ps}}\right) \left(\frac{1.33}{\hat{B}_{B_s}}\right) \left(\frac{\Delta M_s}{17.72/\text{ps}}\right)$$

$$\hat{B}_{B_s}$$

$$-4.5\%$$

uses \hat{B}_{B_s} from HPQCD 09

Motivation: CKM Unitarity Triangle

summary: inputs for the UT fits

Enrico Lunghi

latticeaverages.org

Lattice 2013

${\rm BR}(B\to \tau \nu) = (1.12 \pm 0.27) \times 10^{-4}$	$S_{\psi K_S} = 0.668 \pm 0.023$
$\Delta m_{B_d} = (0.508 \pm 0.004) \; \mathrm{ps^{-1}}$	$\eta_1 = 1.87 \pm 0.76$
$\Delta m_{B_s} = (17.78 \pm 0.12) \ \mathrm{ps^{-1}}$	$\eta_2 = 0.5765 \pm 0.0065$
$m_{t,pole} = (173.5 \pm 1.0) \; \mathrm{GeV}$	$\eta_3 = 0.496 \pm 0.047$
$m_c(m_c) = (1.273 \pm 0.006) \text{ GeV}$	$\eta_B = 0.551 \pm 0.007$
$lpha=(89.5\pm4.3)^{ m o}$	$\gamma = (66 \pm 12)^{\circ}$ [CKMfitter]
$\varepsilon_K = (2.229 \pm 0.012) \times 10^{-3}$	$\lambda = 0.2253 \pm 0.0009$
$\hat{B}_K = 0.766 \pm 0.010$	$f_K = (156.3 \pm 0.9) \; \mathrm{MeV}$
$\kappa_arepsilon = 0.94 \pm 0.02$	$f_B=(190.5\pm 4.2)~\mathrm{MeV}$
$f_{B_s}\sqrt{\hat{B}_{B_s}}=(266\pm18)~{ m MeV}$	$\xi \equiv f_{B_s} \sqrt{\hat{B}_s}/(f_{B_d} \sqrt{\hat{B}_d}) = 1.268 \pm 0.063$
$ V_{ub} _{\rm incl} = (4.34 \pm 0.16^{+0.15}_{-0.22}) \times 10^{-3}$	$ V_{cb} _{\rm incl} = (41.68 \pm 0.44 \pm 0.09 \pm 0.58) \times 10^{-3}$
$ V_{ub} _{ m excl} = (3.41 \pm 0.20) \times 10^{-3}$	$ V_{cb} _{ m excl} = (39.55 \pm 0.72 \pm 0.50) \times 10^{-3}$
$ V_{ub} _{ m avg} = (3.77 \pm 0.44) \times 10^{-3}$	$ V_{cb} _{ m avg} = (40.8 \pm 1.0) imes 10^{-3}$

summary: UT fit output

Enrico Lunghi (LLV)

latticeaverages.org
Lattice 2013

The predictions from all other information when the direct determination of the quantity is removed from fit are

$$|V_{ub}| = (3.49 \pm 0.13) \times 10^{-3} \quad (0.6 \ \sigma) \tag{10}$$

$$S_{\psi K} = 0.757 \pm 0.050 \quad (1.7 \ \sigma) \tag{11}$$

$$|V_{cb}| = (42.48 \pm 1.1) \times 10^{-3} \quad (1.1 \ \sigma) \tag{12}$$

$$\widehat{B}_K = 0.855 \pm 0.11 \quad (0.80 \ \sigma) \tag{13}$$

$$f_{B_d} \sqrt{\widehat{B}_d} = (206.3 \pm 5.4) \text{ MeV} \quad (0.61 \ \sigma)$$
 (14)

$$BR(B \to \tau \nu) = (0.776 \pm 0.065) \times 10^{-4} \quad (1.2 \ \sigma) \tag{15}$$

$$\begin{cases} f_{B_d} = (228. \pm 29.) \text{ MeV} & (1.3 \sigma) \text{ complete fit} \\ f_{B_d} = (208.2 \pm 31.) \text{ MeV} & (0.56 \sigma) \text{ without using } S_{\psi K} \end{cases}$$
 (16)

A. El-Khadra, Lattice meets Experiment, Fermilab, 07 Mar 2014

55